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Sensitivity to Initial Conditions in Self-Organized
Critical Systems
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We discuss sensitivity to initial conditions in a model for avalanches in gran-
ular media displaying self-organized criticality. We show that damage, due to
a small perturbation in initial conditions, does not spread. The damage per-
sists in a statistically time-invariant and scale-free form. We argue that the
origin of this behavior is the Abelian nature of the model, which generalizes
our results to all models with Abelian properties, including the BTW model
and the Manna model. An ensemble average of the damage leads to seemingly
time dependent damage spreading. Scaling arguments show that this numerical
result is due to the time lag before avalanches reach the initial perturbation.
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ity to initial conditions.

There is evidence that the dynamics of a pile of rice may display self-
organized criticality (SOC).(1) In careful experiments where elongated rice
grains were slowly dropped between two glass plates, Frette et al. found
scale-free behavior in a rice pile.(2) In a slowly driven pile, the angle of
repose evolves to a stationary state and the behavior of the system is dom-
inated by a scale-free avalanche size density and punctuated equilibrium.
This punctuation causes SOC systems to be highly non-linear, a single
grain added at one end can result in an avalanche propagating through
the entire system. However, SOC models typically have stick-slip dynam-
ics(3) and it has yet to be established whether they allow the non-linearity
to manifest itself in the form of sensitivity to initial conditions, as it does
in chaotic systems.
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We have studied damage spreading in a simple one-dimensional gran-
ular model known as the Oslo model, which exhibits SOC.(4) It describes a
number of slowly driven granular systems and belongs to the same univer-
sality class as a model for interface depinning in a random medium and
the Burridge–Knopoff train model for earthquakes.(5–7) The Oslo model
has largely resisted efforts for an analytic solution, the few exceptions have
been the exact enumeration of the number of recurrent configurations,(8)

the mapping of the model to the quenched Edwards–Wilkinson equation
in the continuous limit,(5,9) and the transition matrix results (10) and oper-
ator algebra recently developed for the Oslo model.(11) In this letter, we
add to its analytical description by illustrating its Abelian properties.(12)

We find that damage due to a small perturbation does not spread in
the Oslo model as the damage is unable to evolve. It is possible to repre-
sent the perturbation in terms of commutative operators which leads to
a statistically time-invariant and scale-free damage. This phenomenon is
in contrast to what is seen in chaotic and equilibrium systems. We also
address the results obtained by a previous study on an ensemble average
of the damage, which seems to contradict our findings.(13) In fact, we show
that these results are consistent with ours and that the observed behavior
may be derived using simple scaling arguments.

The model: The Oslo model is defined on a one dimensional discrete
lattice with L sites at positions x = 1,2, . . . ,L (see Fig. 1). On the left-
hand side, the boundary is a vertical wall, and on the right-hand side, the
boundary is open. The height of grains at site x and time t is denoted
h(x, t), the local slope is defined as z(x, t) = h(x, t) − h(x + 1, t). Each
site has a critical slope, zc(x), which takes the values 1 or 2 with equal

Fig. 1. (a) The Oslo model of a one-dimensional granular pile. Grains are added at the
site x = 1 next to the vertical wall by letting h(1, t + 1) = h(1, t) + 1. A grain at site x top-
ples to site x +1 if the local slope z(x, t)=h(x, t)−h(x +1, t) exceeds its critical slope zc(x).
When z(L, t) > zc(L), a grain leaves the system at the open boundary, h(L, t) → h(L, t) − 1.
(b) The solid grain is the additional grain in the copy at time t0.
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probability. At each time step a single grain is added to the site at x = 1.
If the local slope at any site, x, exceeds its critical slope, z(x, t) > zc(x),
an avalanche is initiated. The site will relax and a grain will topple from
site x to site x +1, i.e., h(x, t)→h(x, t)−1 and h(x +1, t)→h(x +1, t)+1.
Each time a site relaxes its critical slope is redetermined, chosen randomly
from the values 1 or 2. This toppling may cause sites x ±1 to exceed their
critical slopes, in which case these sites relax in turn. The avalanche will
continue until the system reaches a stable configuration, when z(x, t) �
zc(x) for all x.

In order to study damage spreading in the model we consider a sys-
tem which has been evolved to the critical state and make an exact copy
at some time, t0. We define ho(x, t) and hc(x, t) as the heights of the origi-
nal and copy, respectively, and zo

c (x) and zc
c(x) as the critical slopes of the

original and copy, such that

hc(x, t0) = ho(x, t0),

zc
c(x) = zo

c (x),
1�x �L. (1)

We then perturb the copy by adding a single grain to a site, i, such that
hc(i, t0)=ho(i, t0)+1 (see Fig. 1(b)). This extra grain is not allowed to top-
ple until it is toppled upon by an avalanche from above. The two systems
are then evolved using exactly the same sequence of random thresholds
{zc(x)} for corresponding sites in the original and copy. We achieve this by
keeping a list {zc(x)} of thresholds for each site and when a site relaxes its
new threshold is taken as the next value in the list. Motivation for this is
to consider the mapping of the model to interface depinning as it is clear
that the medium the interface moves through does not change as a result
of the perturbation.

We measure the damage, defined as

H(t,L)=
L∑

x=1

|ho(x, t)−hc(x, t)|. (2)

Fig. 2 is a plot of damage versus time for a typical simulation. There
appears to be no sense of temporal evolution in the data, the damage is
continually fluctuating between high and low values, often returning to
H = 1 where the original and copy only differ by a single grain. The tri-
angles in Fig. 2 indicate which of these H =1 configurations are repaired
configurations where the extra grain in the copy is at the site which was
originally perturbed and corresponding sites in the original and copy have
relaxed exactly the same number of times. In repaired configurations, the



894 Stapleton et al.

0 500 1000 1500 2000
t

0

100

200

300

400

500

H
(t

)

Fig. 2. Damage as a function of time for a single run, L = 128, where the perturbed site
is i = 16 and we have taken t0 = 0. Notice that there is no temporal evolution in the data,
the damage is continually fluctuating between low and high values and frequently returns to
a H = 1 configuration. The triangles indicate where the H = 1 configuration corresponds to
a repaired configuration, where corresponding sites in the original and copy have relaxed an
equal number of times.

difference between the two systems is exactly equal to the initial pertur-
bation at t0. The occurrence of a repaired configuration corresponds to
‘resetting the clock’, meaning that the damage may not evolve in a single
pair of systems, it is statistically time invariant.

This behavior emerges because the Oslo model has an Abelian nature,
where the commutative operation is adding one unit of slope to a site and
allowing the system to relax. The Abelian nature follows from the fact that
the sequences of critical slopes are no longer random noise, but an intrin-
sic property of the system where the values, although generated randomly,
are treated as given a priori. Hence, changing the order of the relaxations
will not change the sequences of thresholds. Note that the operators do
not form an Abelian group as there is no inverse operation. This distin-
guishes the model from other so-called ‘Abelian’ models such as the Abe-
lian sandpile.(12)

We introduce the notation C(t) to represent the stable configuration
of a system at time t . The relevant operators are the perturbation operator
Pi , which simply adds one unit of slope to site i and P̂i , which adds one
unit of slope to site i and allows the system to relax if necessary. Thus, P̂i

represents a mapping within the configuration space of C(t). The evolu-
tion of C(t) can be expressed by an evolution operator T̂ ≡ P̂1, that is

C(t +1)= T̂ C(t). (3)

The operators P̂i and T̂ obey the commutation relation

P̂i T̂ C(t)= T̂ P̂iC(t), (4)
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which we prove elsewhere. Hence, adding slope to a system and then
evolving it leads to the same configuration as evolving it and then add-
ing slope, as we may always move the P̂i operator on the right-hand side
of Eq. (4) to the left-hand side of the T̂ operator.

The perturbation we studied in the simulations was the addition of
a single grain and not slope. Adding a single grain to site i will change
the slopes such that zc(i, t0)=zo(i, t0)+1 and zc(i −1, t0)=zo(i −1, t0)−1.
To analyze this situation, we start with a master system Cm(0) and derive
from this two other systems Co(0) and Cc(0) through the relations

Co(0) = Pi−1C
m(0),

Cc(0) = PiC
m(0).

(5)

It is straightforward to verify that the configurations Co(0) and Cc(0) dif-
fer by one grain at site i, thus reproducing the original and perturbed
systems of our simulations with the perturbative grain placed at site i

(see Fig. 3). After an avalanche has reached site i, the configuration of
the master is related to those of the original and copy by the operators
P̂i−1 and P̂i , respectively, due to Eq. (4). However, the operator P̂i does
not have a unique inverse so there is no direct path between the original
and copy.

It is clear that damage cannot spread. Spreading implies that the
small perturbation at t0 leads to a small amount of damage at t0 + 1,
which will grow until the damage saturates the system, which is the case in

Fig. 3. The relationship between the master, Cm(0), original, Co(0), and copy, Cc(0) con-
figurations at time t0 =0 (see Eq. (5)). The shaded grains are those added to the master con-
figuration to produce configuration of the original system. The solid grain is the additional
grain added to the configuration of the copy at time t0.
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a chaotic system. The Abelian nature means that the value of the damage
at any time is independent of when the perturbation took place. Also, the
damage does not remain constant or decay, as in an equilibrium system,
because the damage is exactly that due to the avalanches which would be
caused by adding slope to different sites in the master system at that time.
This leads to a damage size density that is related to the avalanche size
density, as easily recognized by considering the special case of perturbing
site i =1. As the avalanche size density is scale free, we find that the dam-
age size density is scale free also. In an infinite system the damage may
become arbitrarily large, yet it will frequently return to an H = 1 config-
uration! In other words such a system may be considered as lying on the
edge of chaos.(14,15)

The damage in a single pair of systems is statistically time invariant,
yet a previous study has found that the ensemble averaged data is not.(13)

The ensemble average of damage over N runs, gives the average damage
as a function of time

〈H 〉(t,L)= 1
N

N∑
j=1

Hj(t,L, ij ), (6)

where Hj(t,L, ij ) is the damage from a single run and the variable ij is
the site of perturbation for the j th run. In ref. 13 it was found that for
ij =L/2 ∀j

〈H 〉(t,L)= tz G

(
t

Lβ

)
, (7)

where z and β are exponents to be determined and G(x) is constant for
x � 1 and proportional to x−z for x � 1. The apparent time dependence
for time t �Lβ arises from the fact that the perturbed site is not allowed
to relax until its neighbour relaxes. This forces all the systems into a
repaired configuration at the start of the simulation and the average dam-
age increases over time as more systems have avalanches which reach the
perturbed site.

In the case where the perturbative grain was placed on a random site
for each system in the ensemble, scaling arguments may be used to derive
the temporal evolution of 〈H 〉(t,L). The derived equation agrees well with
the simulation data. First, we calculate how long avalanches take to reach
the perturbed site, which we denote as site i. The linear avalanche size, l,
is known to be related to the avalanche size, s, by s ∝ lD, where D is the
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avalanche fractal dimension, D ≈ 2.25.(5) Hence, the probability Pl(l,L)dl

of having an avalanche with linear length in the range l → l + dl, obeys
Pl(l,L) dl =Ps(s,L) ds, where Ps(s,L)ds is the probability of having an
avalanche of size s in the range s → s +ds, given by the scaling ansatz

Ps(s,L) ds = s−τGs

( s

LD

)
ds, (8)

where Gs(x) is constant for x � 1 and decays rapidly for x � 1, and τ is
the avalanche exponent, τ ≈1.55.(5) We find

Pl(l,L) dl = l−DGl

(
l

L

)
dl, (9)

where Gl (x) is constant for x �1 and decays rapidly for x →1. Note that
we have used the scaling relation τ = 2 − 1/D which is derived from the
fact that 〈s〉=L.

This leads immediately to the probability of having an avalanche of
linear size larger than some distance X, φ(X) ∝ X1−D. Hence, we may
expect to have an avalanche of size l >X within the timescale

t = 1
φ(X)

=XD−1 =Xχ, (10)

where we have used the scaling relation χ =D − 1, relating the roughness
exponent χ to the avalanche fractal dimension D.(5)2 We use Eq. (10) to
obtain an ansatz for 〈X〉(t,L), the average linear distance reached by the
avalanches in a time t,

〈X〉(t,L)= t (1/χ)g

(
t

tL

)
, (11)

where tL is the timescale after which the avalanches can be expected to
have spanned the entire system and g(x) is constant for x � 1 and pro-
portional to x−(1/χ) for x � 1 to ensure that 〈X〉(t,L) � L for all t . By
inserting X=L into Eq. (10) we see that tL ∝Lχ , which is consistent with
〈X〉(∞,L)=L, as expected.

It is possible, using similar scaling arguments and taking care to use
the scaling relation τ = 2 − 2/D for a bulk driven system(16), to obtain

2One might conjecture that the values for the critical exponents are τ = (14/9), D= (9/4) and
χ = (5/4).



898 Stapleton et al.

the mean value of the damage for a system in the damaged configuration,
〈H 〉 ∝ L. This is consistent with our measurement 〈H 〉 ∝ Lα with α ≈ 1.
Thus, the average damage as a function of time and system size, 〈H 〉(t,L),
may be expressed as

〈H 〉(t,L) ∝ LFH �=1(t,L)+ (
1−FH �=1(t,L)

)
≈ LFH �=1(t,L) for L�1, (12)

where FH �=1(t,L) is the fraction of systems in an H �= 1 damaged config-
uration at time t . If the positions of the perturbed sites are distributed
uniformly among the systems in the ensemble, we expect

〈H 〉(t,L)∝L
〈X〉(t,L)

L
= t (1/χ)G

(
t

Lχ

)
, (13)

where G(x)∝g(x) and we have taken t0 = 0. Using the value χ = 5/4, we
obtain

〈H 〉(t,L)= t0.80G
( t

L1.25

)
. (14)

A data collapse of the data using these values is shown in Fig. 4. It
is in good agreement with Eq. (14), thus supporting our explanation for
the appearance of a time dependence in 〈H 〉(t,L). However, this is only
a crude calculation. For instance, there is actually a distribution of times
and this will contribute to the time dependence of 〈H 〉(t,L).
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Fig. 4. By plotting t−0.80〈H 〉(t,L) versus the rescaled time x = L−1.25t the data for the
ensemble average collapses onto a single well defined curve G(x) (see Eq. (14)). This is shown
for system sizes L=64,128,256 and 512. The number of systems in each ensemble is 10,000.
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In conclusion, we have analyzed damage spreading in the Oslo model,
showing that damage is unable to evolve in a perturbed system. The
damage is statistically time invariant and scale free and thus allows for
arbitrarily large values in infinite systems. This phenomenon is due to the
Abelian property of the Oslo model, and this generalizes our result to
all other models with Abelian properties, including the BTW model,(1)

the Manna model(17) and the model for interface depinning in a random
medium.(5,9) Thus, many of the classic models of SOC may be considered
as lying on the edge of chaos.(14,15) Finally, we have shown how simula-
tions may in fact lead to a time dependent ensemble averaged damage and
have calculated this for the case of random placement of the perturbative
grain.
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